

Enhancing sound through touch

Sarah Poyntz Supervisors: Adrian Rees, Quoc Vuong

Introduction

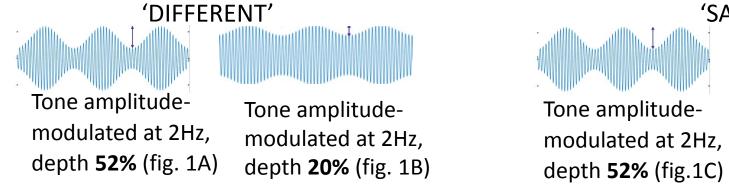
There is evidence showing that our senses may interact through certain brain mechanisms. Examples of interaction of senses and intermodal interaction:

Auditory visual

Previous studies that have been done in my supervisors' lab have demonstrated how hearing can be influenced by what we see.

Auditory tactile

There is some evidence showing that when both tactile and auditory stimuli have the same frequency, sound can influence tactile judgements (Yau et al 2009).

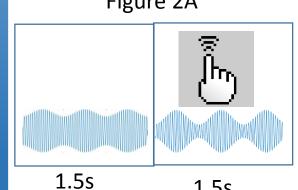

Research questions

- 1. Does a tactile stimulus influence the depth of a modulated sound? This hypothesis is explored in experiment 1a.
- 2. Does a modulated sound influence the depth of a modulated tactile stimulus? This hypothesis is explored in experiment 1b.
- 3. Does tactile stimulation improve identification of words in speech This hypothesis is explored in experiment 2.

Method Experiment - 1a & 1b

Stimulus

Figures showing examples of amplitude modulated sounds: **duration 1.5s** 'DIFFERENT' 'SAME'



- Experiment 1a: trials pairs of sounds with same or different modulation depth. Subject's task: is the pair 'same' or 'different'?
- Modulation depths used 20%, 28%, 36%, 44% or 52%.
- 'Different' trials: one interval 20%, other interval: 28, 36, 44, or 52%
- 'Same' trials: same modulation depth in both intervals.
- In Experiment 1b, same as Experiment 1a, but with pairs of modulated tactile stimuli.

Apparatus

- Auditory stimuli played through headphones. Tactile stimulus generated by a tactile stimulator that delivered a vibration to the finger tip (fig.4).
- Subject responses recorded using computer keyboard.

Procedure

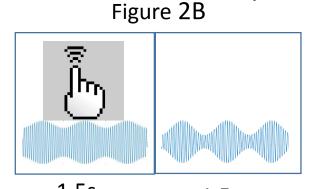


Figure 2A, > shows tactile stimulation present on more modulated sound.

Figure 2B, < shows tactile stimulation present on the less modulated sound.

Tone amplitude-

modulated at 2Hz,

depth 52% (fig. 1D)

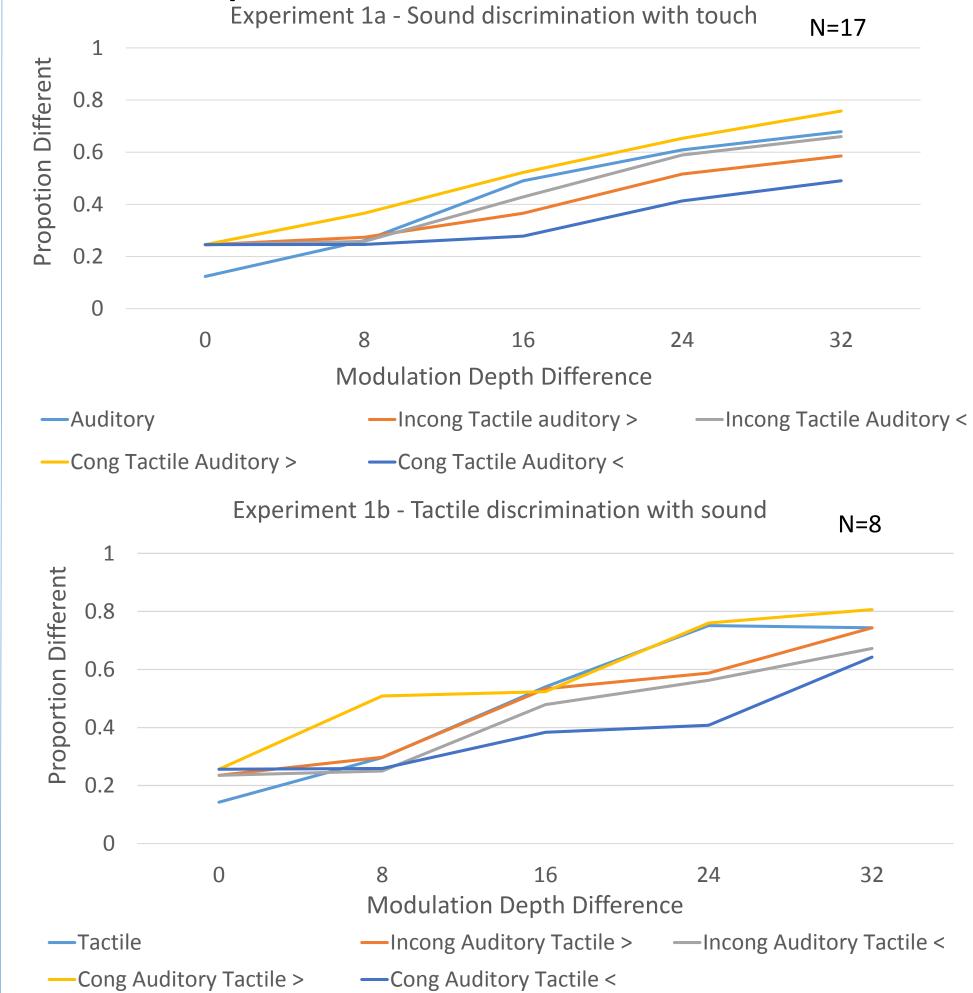

- 1.5s
 <li
- Example experiment 1b, discrimination of two tactile stimuli measured in presence or absence of a sound modulated at 70% depth.

Figure 2C Figure 2D

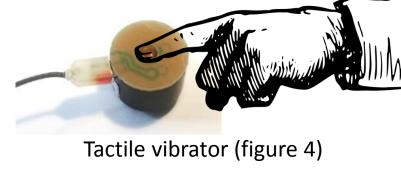
The line of the second of the second

Figure 2C, > shows more modulated sound present during tactile stimulation. Figure 2D. < shows more modulated sound present during tactile stimulation.

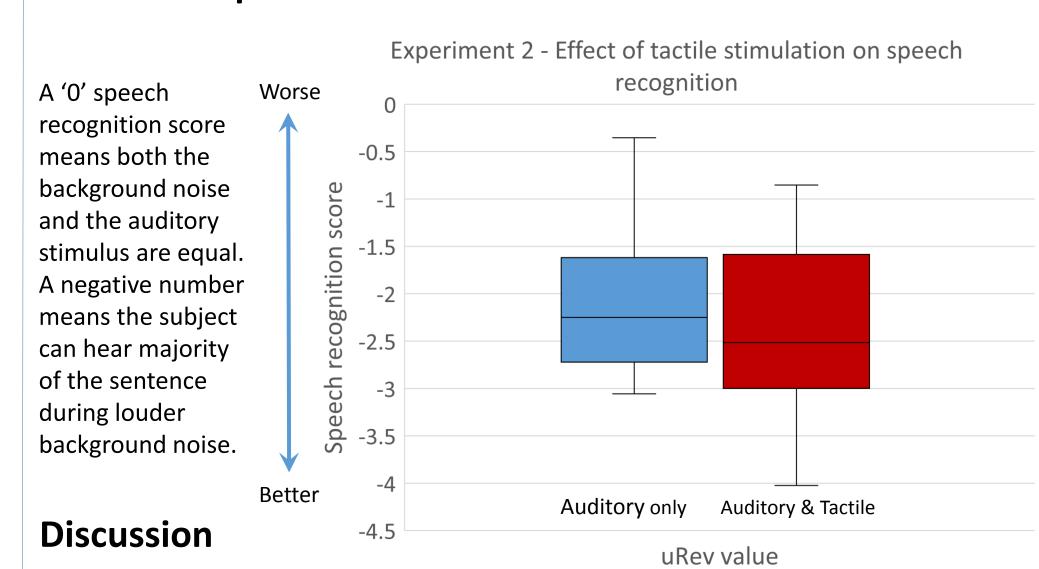
Results – Experiments 1a & 1b

Method - Experiment 2

Participants were invited from a pool of healthy volunteers. Ages from 19 - mid 60's. **Stimulus**


- Sentences were taken from a standard set, referred to as 'IEEE sentences'. These
 contain many grammatically correct but unpredictable sentences and no sentences
 were repeated throughout the experiment.
- The tactile stimulus is created by extracting the amplitude envelope from the sentence in order to modulate the amplitude of the tactile vibration.

Apparatus


- A vibrator provides a tactile stimulus created from the speech envelope of different sentences. The computer is used to record number of key words repeated successfully.
 Procedure
- The ability to recognise speech in the presence of background noise was compared to ability of speech recognition in the presence of the tactile stimulus.
- The participant listened to sentence and was asked to repeat it.
- The sentence was played in the presence of background noise with or without tactile stimulation.
- The effect of the tactile stimulus synchronous to the auditory stimulus is then measured.

 The birch canoe slid on the smooth plank.

Speech envelope corresponding to tactile stimuli (figure 3)

Results – Experiment 2

Experiment 1a & b

- A positive correlation between modulation depth difference and the ability to discriminate the difference in the two sounds.
- Therefore the greater the modulation difference, a higher proportion voted 'different'.

In experiment 1a, when the two stimuli were congruent (cong);

- If the tactile stimulus was present during the more greatly modulated sound, a greater proportion of subjects voted 'different' compared to incong values.
- When the tactile stimulus was present during the less modulated sound, a higher proportion of subjects voted 'same'.

In experiment 1b, when the two stimuli were congruent (cong);

- If the auditory stimulus was present during the more greatly modulated vibration, a greater proportion said 'different' compared to incongruent (incong) values.
- When the auditory stimulus was present during the less modulated vibration, a higher proportion voted 'same'.

Experiment 2

- In the auditory only task, the speech recognition score was less negative compared to the auditory tactile task. The mean uRev for the auditory tactile task was -2.196 dB compared to -2.058 dB for the auditory only task.
- The median speech recognition score was also more negative for the auditory tactile task therefore majority of the participants scored better in the auditory tactile task.

Conclusion

Experiment 1a

■ The presence of tactile stimulation had a influence on discrimination of the two sounds when stimuli were synchronous.

Experiment 1b

■ The presence of auditory stimulation had a influence on discrimination of two vibrations when stimuli were synchronous.

Experiment 2

- Results showed the ability to recognise words in background noise improved in the presence of the tactile stimulus.
- A more negative value for the auditory tactile task shows the subject can hear the sentences under a higher level of background noise with tactile stimulation.

Acknowledgment

Supported by vacation scholarship from the Wellcome Trust